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q = 0 Oscillator Algebra as a Hopf Algebra 
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In this paper we show that the q = 0 oscillator algebra is a Hopf algebra. 

About 4 years ago Greenberg  (1990) presented an example  of  infinite 
statistics for identical particles. He  averaged the boson  algebra 

and fermion algebra 

to get the new algebra 

a a  + - a + a  = 1 (1) 

a a  + + a + a  = 1 (2) 

a a  + = 1 (3) 

He  showed that the statistical mechanics  of  particles satisfying the algebra 
(3) obeys the quantum Bol tzmann  statistics. After  this work  was done he 
found out that the algebras (1 ) - (3 )  are special examples  of  a q-deformed 
boson algebra (Biedenharn,  1989; Macfar lane,  1989; Arik and Coon, 1976), 2 

a a  + - q a + a  = 1 

[N, a +] = a + (4) 

[N, a] = - a  

where N is a number  operator. 

~Theory Group, Department of Physics, College of Natural Sciences, Gyeongsang National 
University, Jinju, 660-701, Korea. 

2When q = 1, -1,  0, the algebra (4) reduces to the algebras (1), (2), and (3), respectively. 
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Greenberg assumed the existence of a unique vacuum state annihilated 
by the annihilation operator a: 

a[0) = 0 (5) 

He constructed the number operator N for the algebra (3) satisfying the second 
and third relations of (4), whose form is given by 

N = a+a + a + a + a a  + a + a + a + a a a  + " '"  

= ~ (a+)ma m (6) 
In = l 

Here we check that the number operator (6) satisfies the second and third 
relations of (4): 

co co 

[N, a +] = ~] (a+)mama + -  E (a+)m+lam 
m = l  r n = l  

= ~ (a+)mam- laa  + -  a + (a+)ma m 

m = l  m = l  

= a+ ( ~ (a+)m-lam-I - ~ m = l  

= a § 1 + ~ .  ( a + ) m - l a  m - l -  (a+)ma m 

m = 2  m = l  

= a + 1 + (a+)ma m - (a+)ma m 

m = l  m=l 

= a + (7) 

which implies that the number operator given in (6) fulfills the properties 
for the number operator. This kind of number operator cannot be obtained 
by setting q = 0 in the number operator given in the q-boson algebra. The 
number operator for the q-boson algebra (4) is already known from 

qN_ 1 
[N] - - a+ a (8) q _ q - 1  

Substituting q = 0 in equation (7) leads to no relation between the number 
operator N and mode operators a and a +, because a q-number goes to 1 
whenever q goes to 0. 

Now we will show that this algebra (q = 0 oscillator algebra) is a Hopf 
algebra. The three operations of the Hopf algebra for the q = 0 oscillator 
algebra are given by 
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A(N) = N |  I |  

A(D = i | i 

A(a +) = I | a + 

A(a) = I | a 

~(/) = 1, e(a) = a, e(a +) = a +, e(N) = 0 

S(1) = 1, S(a) = a, S(a § = a +, S(N) = - N  

where A, S, and e are called the coproduct,  antipode, and counit, respectively. 
The  H o p f  algebra A should satisfy the fol lowing three axioms for all e lements  
(generators) x E A: 

(id | A)A(x) = (A | id)A(x) 

m(id | S)A(x) = m(S  | id)A(x) = e(x).  1 

(e | id)A(x) = (id | e)A(x) = x, x = L a, a +, N 

It is easy to check that this set o f  definitions fulfills the three axioms.  First 
let us prove  that the coproduct  ax iom holds for a: 

(id | A)A(a) = (A | id)A(a) 

Proo f  LHS = (id | A)A(a) = (id | A)(I  | a) = I | A(a) = I | 
I |  = ( A |  = ( A | 1 7 4  = A ( / ) |  = I | 1 7 4  

Second let us check the case for N: 

(id | A)A(N) = (A @ id)A(N) 

Proo f  LHS = ( i d | 1 7 4  I |  = N | 1 7 4  I | 1 7 4  
I +  I | 1 7 4  = (A | 1 7 4  + I |  = N | 1 7 4  I |  
N | 1 7 4  

The counit  ax iom is verif ied as follows: 

(~ | id)A(a) = (id | e)A(a) = a 

Proo f  LHS = (e | id)A(a) = (e | id)(I  | a) = e(/) | a = a; 
RHS = (A | e)A(a) = (id | e)(I  | a) = I | e(a) = a. 

We will prove  that 

m(id)A(a) = m(S | id)A(a) = e(a) 

Proo f  LHS = m(id | S)A(a) = I . S (a )  = a = e(a); RHS = m(S  | 
id)A(a) = S(1)a = a = e(a). 
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We now verify that 

A(aa § = A(a)A(a +) 

Proof .  LHS = A(aa +) = A(/) = I |  = ( I | 1 7 4  +) = I |  

aa  + = I | I. 

It is easy to check that the following formula holds: 

A([N, a]) = [A(N), A(a)] 

P r o o f  [A(N),A(a)] = [ N |  I | 1 7 4  = N |  N |  + 
I | N a  - l | a N  = I | [N, a] = - I  | a = - A ( a )  = A ( - a )  = A([N,a]). 

From the above proofs, we can conclude that q = 0 oscillator algebra 
is really a Hopf algebra. 
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